Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
medRxiv ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38605883

RESUMEN

Objective: The Krebs cycle enzyme Aconitate Decarboxylase 1 (ACOD1) mediates itaconate synthesis in myeloid cells.. Previously, we reported that administration of 4-octyl itaconate abrogated lupus phenotype in mice. Here, we explore the role of the endogenous ACOD1/itaconate pathway in the development of murine lupus as well as their relevance in premature cardiovascular damage in SLE. Methods: We characterized Acod1 protein expression in bone marrow-derived macrophages and human monocyte-derived macrophages, following a TLR7 agonist (imiquimod, IMQ). Wild type and Acod1-/- mice were exposed to topical IMQ for 5 weeks to induce an SLE phenotype and immune dysregulation was quantified. Itaconate serum levels were quantified in SLE patients and associated to cardiometabolic parameters and disease activity. Results: ACOD1 was induced in mouse bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages following in vitro TLR7 stimulation. This induction was partially dependent on type I Interferon receptor signaling and specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum anti-dsDNA and proinflammatory cytokine levels, enhanced kidney immune complex deposition and proteinuria, when compared to the IMQ-treated WT mice. Consistent with these results, Acod1-/- BMDM exposed to IMQ showed higher proinflammatory features in vitro. Itaconate levels were decreased in SLE serum compared to healthy control sera, in association with specific perturbed cardiometabolic parameters and subclinical vascular disease. Conclusion: These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in SLE, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.

2.
Nat Immunol ; 25(5): 764-777, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609546

RESUMEN

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Asunto(s)
Síndromes de Inmunodeficiencia , Proteínas del Tejido Nervioso , Ubiquitinas , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Femenino , Masculino , FN-kappa B/metabolismo , Ubiquitina-Proteína Ligasas/genética , Inflamación/inmunología , Inflamación/genética , Linfocitos B/inmunología , Mutación con Pérdida de Función , Fibroblastos/metabolismo , Fibroblastos/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Ratones , Alelos
3.
Ann Rheum Dis ; 83(6): 787-798, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408849

RESUMEN

OBJECTIVES: To study the molecular pathogenesis of PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a debilitating hereditary autoinflammatory disease caused by dominant mutation in PSTPIP1. METHODS: Gene knock-out and knock-in mice were generated to develop an animal model. THP1 and retrovirally transduced U937 human myeloid leukaemia cell lines, peripheral blood mononuclear cells, small interfering RNA (siRNA) knock-down, site-directed mutagenesis, cytokine immunoassays, coimmunoprecipitation and immunoblotting were used to study inflammasome activation. Cytokine levels in the skin were evaluated by immunohistochemistry. Responsiveness to Janus kinase (JAK) inhibitors was evaluated ex vivo with peripheral blood mononuclear cells and in vivo in five treatment-refractory PAPA patients. RESULTS: The knock-in mouse model of PAPA did not recapitulate the human disease. In a human myeloid cell line model, PAPA-associated PSTPIP1 mutations activated the pyrin inflammasome, but not the NLRP3, NLRC4 or AIM2 inflammasomes. Pyrin inflammasome activation was independent of the canonical pathway of pyrin serine dephosphorylation and was blocked by the p.W232A PSTPIP1 mutation, which disrupts pyrin-PSTPIP1 interaction. IFN-γ priming of monocytes from PAPA patients led to IL-18 release in a pyrin-dependent manner. IFN-γ was abundant in the inflamed dermis of PAPA patients, but not patients with idiopathic pyoderma gangrenosum. Ex vivo JAK inhibitor treatment attenuated IFN-γ-mediated pyrin induction and IL-18 release. In 5/5 PAPA patients, the addition of JAK inhibitor therapy to IL-1 inhibition was associated with clinical improvement. CONCLUSION: PAPA-associated PSTPIP1 mutations trigger a pyrin-IL-18-IFN-γ positive feedback loop that drives PAPA disease activity and is a target for JAK inhibition.


Asunto(s)
Acné Vulgar , Artritis Infecciosa , Modelos Animales de Enfermedad , Inflamasomas , Interferón gamma , Piodermia Gangrenosa , Piodermia Gangrenosa/genética , Humanos , Animales , Ratones , Acné Vulgar/inmunología , Inflamasomas/metabolismo , Inflamasomas/inmunología , Interferón gamma/metabolismo , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de las Cinasas Janus/farmacología , Ratones Noqueados , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Retroalimentación Fisiológica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Pirina/genética , Mutación , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Técnicas de Sustitución del Gen , Interleucina-18/metabolismo , Células THP-1
5.
Proc Natl Acad Sci U S A ; 120(40): e2306761120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37756335

RESUMEN

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.


Asunto(s)
Antineoplásicos , Factor de Transcripción STAT5 , Humanos , Inmunidad Innata , Diferenciación Celular , Células Asesinas Naturales , Inflamación , Factor de Transcripción STAT4/genética
6.
Lupus Sci Med ; 9(1)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220328

RESUMEN

OBJECTIVE: In patients with systemic lupus erythematosus (SLE), fatigue is a debilitating symptom with poorly understood pathophysiology. Cardiorespiratory dysfunction has been hypothesised as a contributor to SLE-fatigue. The purpose of this exploratory study was to examine changes in cardiorespiratory function, following an exercise training programme in women with SLE, together with patient reported outcomes and other pathophysiological measures that may underlie SLE-fatigue. METHODS: Sixteen women with SLE and fatigue (Fatigue Severity Scale (FSS) ≥3) were enrolled in a supervised aerobic exercise training programme of vigorous intensity. The primary outcome was time to reach anaerobic threshold (AT-Time) during a cardiopulmonary exercise test (CPET). Secondary outcomes included changes in the 10-minute walk test (10MWT), FSS scores and the Patient Reported Outcomes Measurement Information System (PROMIS-57) survey. Mitochondrial function was assessed by the oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) metabolic potential ratio. RESULTS: Following 12 weeks of exercise training, AT-Time increased by 93±82 (mean±SD) s (p<0.001), 10MWT increased by 84±66 m (p<0.001) and peak oxygen uptake (VO2) increased by 1.4±2.0 mL/kg/min (p=0.013). There were improvements in FSS score (-1.4±1.0, p<0.0001) and in most of the PROMIS-57 domains. The decrease in FSS scores correlated with an increase in the OCR/ECAR ratio (Pearson's correlation r=-0.59, p=0.03). A subset of subjects (9/15) had significant reduction in their Interferon Stimulated Genes (ISG) (p=0.007) accompanied by a significant increase in the OCR/ECAR ratio (p=0.013). CONCLUSIONS: Cardiorespiratory function was improved in concomitance with reductions in fatigue following a 12-week aerobic exercise programme. The reduction in fatigue scores correlated with improvements in mitochondrial function.


Asunto(s)
Lupus Eritematoso Sistémico , Ejercicio Físico/fisiología , Fatiga/complicaciones , Fatiga/diagnóstico , Femenino , Humanos , Interferones , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/terapia , Oxígeno , Proyectos Piloto
7.
Sci Immunol ; 7(74): eabl3795, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35984892

RESUMEN

A diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death. Increased MHC-II presentation of PDIA3 peptides was associated with antigen-specific proliferation of hepatic CD4+ immune infiltrates and isotype switch of anti-PDIA3 antibodies from IgM to IgG3, indicative of cellular and humoral PDIA3 autoreactivity. Passive transfer of PDIA3-specific T cells or PDIA3-specific antibodies also exacerbated hepatocyte death, as determined by increased hepatic transaminases detected in the sera of mice subjected to an HFHF but not control diet. Increased humoral responses to PDIA3 were also observed in patients with chronic inflammatory liver conditions, including autoimmune hepatitis, primary biliary cholangitis, and type 2 diabetes. Together, our data indicated that metabolic insults caused by an HFHF diet elicited liver damage and promoted pathogenic immune autoreactivity driven by T and B cell PDIA3 epitopes.


Asunto(s)
Autoinmunidad , Diabetes Mellitus Tipo 2 , Hígado , Proteína Disulfuro Isomerasas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Epítopos , Antígenos de Histocompatibilidad Clase II , Hígado/patología , Ratones , Péptidos , Proteína Disulfuro Isomerasas/inmunología , Proteína Disulfuro Isomerasas/metabolismo
8.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868845

RESUMEN

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , FN-kappa B , Proteínas Quinasas/genética , Amiloidosis , Animales , Estudios de Cohortes , Mutación con Ganancia de Función , Enfermedades Autoinflamatorias Hereditarias/genética , Humanos , Inflamación/genética , Ratones , Mutación , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Calidad de Vida , Proteína Amiloide A Sérica , Síndrome , Inhibidores del Factor de Necrosis Tumoral
9.
Sci Adv ; 7(47): eabi6794, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34797715

RESUMEN

OTULIN is a linear deubiquitinase that negatively regulates the nuclear factor κB (NF-κB) signaling pathway. Patients with OTULIN deficiency, termed as otulipenia or OTULIN-related autoinflammatory syndrome, present with early onset severe systemic inflammation due to increased NF-κB activation. We aimed to investigate additional disease mechanisms of OTULIN deficiency. Our study found a remarkable activation of type I interferon (IFN-I) signaling in whole blood, peripheral blood mononuclear cells, monocytes, and serum from patients with OTULIN deficiency. We observed similar immunologic findings in OTULIN-deficient cell lines generated by CRISPR. Mechanistically, we identified proteasome subunits as substrates of OTULIN deubiquitinase activity and demonstrated proteasome dysregulation in OTULIN-deficient cells as the cause of IFN-I activation. These results reveal an important role of linear ubiquitination in the regulation of proteasome function and suggest a link in the pathogenesis of proteasome-associated autoinflammatory syndromes and OTULIN deficiency.

10.
Nat Commun ; 12(1): 4447, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290243

RESUMEN

Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-L-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-γ mediated STAT1/NF-κΒ pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1ß, IFN-γ, and IL-17 production, and inhibiting generation of effector CD8+ T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance.


Asunto(s)
Aminas Biogénicas/farmacología , Inmunomodulación/efectos de los fármacos , Quinurenina/análogos & derivados , Animales , Aminas Biogénicas/metabolismo , Aminas Biogénicas/uso terapéutico , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Inflamación , Interferón gamma/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Quinurenina/uso terapéutico , Ratones , FN-kappa B/metabolismo , Nefritis/tratamiento farmacológico , Nefritis/inmunología , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Triptófano/metabolismo
11.
Nat Commun ; 12(1): 3391, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099646

RESUMEN

Increased risk of premature cardiovascular disease (CVD) is well recognized in systemic lupus erythematosus (SLE). Aberrant type I-Interferon (IFN)-neutrophil interactions contribute to this enhanced CVD risk. In lupus animal models, the Janus kinase (JAK) inhibitor tofacitinib improves clinical features, immune dysregulation and vascular dysfunction. We conducted a randomized, double-blind, placebo-controlled clinical trial of tofacitinib in SLE subjects (ClinicalTrials.gov NCT02535689). In this study, 30 subjects are randomized to tofacitinib (5 mg twice daily) or placebo in 2:1 block. The primary outcome of this study is safety and tolerability of tofacitinib. The secondary outcomes include clinical response and mechanistic studies. The tofacitinib is found to be safe in SLE meeting study's primary endpoint. We also show that tofacitinib improves cardiometabolic and immunologic parameters associated with the premature atherosclerosis in SLE. Tofacitinib improves high-density lipoprotein cholesterol levels (p = 0.0006, CI 95%: 4.12, 13.32) and particle number (p = 0.0008, CI 95%: 1.58, 5.33); lecithin: cholesterol acyltransferase concentration (p = 0.024, CI 95%: 1.1, -26.5), cholesterol efflux capacity (p = 0.08, CI 95%: -0.01, 0.24), improvements in arterial stiffness and endothelium-dependent vasorelaxation and decrease in type I IFN gene signature, low-density granulocytes and circulating NETs. Some of these improvements are more robust in subjects with STAT4 risk allele.


Asunto(s)
Aterosclerosis/prevención & control , Inhibidores de las Cinasas Janus/administración & dosificación , Lupus Eritematoso Sistémico/tratamiento farmacológico , Piperidinas/administración & dosificación , Pirimidinas/administración & dosificación , Adulto , Anciano , Animales , Aterosclerosis/sangre , Aterosclerosis/genética , Aterosclerosis/inmunología , HDL-Colesterol/sangre , Método Doble Ciego , Femenino , Predisposición Genética a la Enfermedad , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Inhibidores de las Cinasas Janus/efectos adversos , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/inmunología , Masculino , Persona de Mediana Edad , Piperidinas/efectos adversos , Pirimidinas/efectos adversos , Factor de Transcripción STAT4/genética , Resultado del Tratamiento , Rigidez Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Adulto Joven
13.
Nature ; 577(7788): 103-108, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31827281

RESUMEN

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1-/- mice died postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


Asunto(s)
Caspasa 8/metabolismo , Enfermedades Autoinflamatorias Hereditarias/metabolismo , Mutación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Caspasa 3/metabolismo , Femenino , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/patología , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linaje , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
14.
J Immunol Methods ; 477: 112667, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31726053

RESUMEN

Fluorescent cell barcoding (FCB) is a multiplexing technique for high-throughput flow cytometry (FCM). Although powerful in minimizing staining variability, it remains a subjective FCM technique because of inter-operator variability and differences in data analysis. FCB was implemented by combining two-dye barcoding (DyLight 350 plus Pacific Orange) with five-color surface marker antibody and intracellular staining for phosphoprotein signaling analysis. We proposed a robust method to measure intra- and inter-assay variability of FCB in T/B cells and monocytes by combining range and ratio of variability to standard statistical analyses. Data analysis was carried out by conventional and semi-automated workflows and built with R software. Results obtained from both analyses were compared to assess feasibility and reproducibility of FCB data analysis by machine-learning methods. Our results showed efficient FCB using DyLight 350 and Pacific Orange at concentrations of 0, 15 or 30, and 250 µg/mL, and a high reproducibility of FCB in combination with surface marker and intracellular antibodies. Inter-operator variability was minimized by adding an internal control bridged across matrices used as rejection criterion if significant differences were present between runs. Computational workflows showed comparable results to conventional gating strategies. FCB can be used to study phosphoprotein signaling in T/B cells and monocytes with high reproducibility across operators, and the addition of bridge internal controls can further minimize inter-operator variability. This FCB protocol, which has high throughput analysis and low intra- and inter-assay variability, can be a powerful tool for clinical trial studies. Moreover, FCB data can be reliably analyzed using computational software.


Asunto(s)
Citometría de Flujo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inmunofenotipificación/métodos , Factores de Transcripción STAT/metabolismo , Transducción de Señal/inmunología , Linfocitos B/metabolismo , Ensayos Clínicos como Asunto , Biología Computacional/métodos , Estudios de Factibilidad , Colorantes Fluorescentes/química , Voluntarios Sanos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Monocitos/metabolismo , Fosfoproteínas/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos , Coloración y Etiquetado/métodos , Linfocitos T/metabolismo
15.
Front Immunol ; 10: 479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936877

RESUMEN

Background: HOIP is the catalytic subunit of the linear ubiquitination chain assembly complex (LUBAC) that is essential for NF-κB signaling and thus proper innate and adaptive immunity. To date only one patient with HOIP deficiency has been reported with clinical characteristics that include autoinflammation, immunodeficiency, amylopectinosis, and systemic lymphangiectasia. Case: We sought to identify a genetic cause of a disease for an 8 year-old girl who presented with early-onset immune deficiency and autoinflammation. Methods: Targeted next generation sequencing of 352 immune-related genes was performed. Functional studies included transcriptome analysis, cytokine profiling, and protein analysis in patients' primary cells. Results: We identified biallelic variants in close proximity to splice sites (c.1197G>C and c.1737+3A>G) in the RNF31 gene. RNA extracted from patient cells showed alternatively spliced transcripts not present in control cells. Protein expression of HOIP and LUBAC was reduced in primary cells as shown by western blotting. Patient-derived fibroblasts demonstrated attenuated IL-6 production, while PBMCs showed higher TNF production after stimulation with proinflammatory cytokines. RNA sequencing of whole blood RNA and PBMCs demonstrated a marked transcriptome wide change including differential expression of type I interferon regulated genes. Conclusion: We report the second case of HOIP deficiency with novel compound heterozygous mutations in RNF31 and distinct clinical and molecular features. Our results expand on the clinical spectrum of HOIP deficiency and molecular signatures associated with LUBAC deficiency.


Asunto(s)
Inmunodeficiencia Variable Común/genética , Regulación de la Expresión Génica , Inflamación/genética , Polimorfismo de Nucleótido Simple , Transcriptoma , Ubiquitina-Proteína Ligasas/deficiencia , Alelos , Empalme Alternativo , Niño , Inmunodeficiencia Variable Común/diagnóstico , Inmunodeficiencia Variable Común/inmunología , Citocinas/biosíntesis , Citocinas/genética , Exones/genética , Femenino , Heterocigoto , Humanos , Linfangiectasia/genética , Activación de Linfocitos , FN-kappa B/fisiología , Fenotipo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación/genética , Ubiquitinas/metabolismo
17.
Ann Rheum Dis ; 77(4): 612-619, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358286

RESUMEN

OBJECTIVES: To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS: We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS: We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1ß were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS: Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.


Asunto(s)
Anemia Sideroblástica/genética , Antiinflamatorios/uso terapéutico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Síndromes de Inmunodeficiencia/genética , Mutación , Nucleotidiltransferasas/genética , ARN de Transferencia/genética , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adulto , Anemia Sideroblástica/sangre , Niño , Preescolar , Citocinas/sangre , Citocinas/genética , Discapacidades del Desarrollo/genética , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/sangre , Humanos , Inmunofenotipificación , Masculino , Linaje , Fenotipo , Factor de Necrosis Tumoral alfa/análisis , Secuenciación del Exoma
18.
Clin Pharmacol Ther ; 104(2): 364-373, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29134648

RESUMEN

Population pharmacokinetic (popPK) modeling was used to characterize the PK profile of the oral Janus kinase (JAK)1/JAK2 inhibitor, baricitinib, in 18 patients with Mendelian interferonopathies who are enrolled in a compassionate use program. Patients received doses between 0.1 to 17 mg per day. Covariates of weight and renal function significantly influenced volume-of-distribution and clearance, respectively. The half-life of baricitinib in patients less than 40 kg was substantially shorter than in adult populations, requiring the need for dosing up to 4 times daily. On therapeutic doses, the mean area-under-the-concentration-vs.-time curve was 2,388 nM*hr, which is 1.83-fold higher than mean baricitinib exposures in adult patients with rheumatoid arthritis receiving doses of 4 mg once-daily. Dose-dependent decreases in interferon (IFN) biomarkers confirmed an in vivo effect of baricitinib on type-1 IFN signaling. PopPK and pharmacodynamic data support a proposal for a weight- and estimated glomerular filtration rate-based dosing regimen in guiding baricitinib dosing in patients with rare interferonopathies.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Azetidinas/administración & dosificación , Azetidinas/farmacocinética , Cálculo de Dosificación de Drogas , Inflamación/tratamiento farmacológico , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 2/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/administración & dosificación , Inhibidores de las Cinasas Janus/farmacocinética , Modelos Biológicos , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacocinética , Administración Oral , Adolescente , Factores de Edad , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/genética , Azetidinas/efectos adversos , Peso Corporal , Niño , Preescolar , Ensayos de Uso Compasivo , Femenino , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Humanos , Lactante , Inflamación/diagnóstico , Inflamación/enzimología , Inflamación/genética , Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Inhibidores de las Cinasas Janus/efectos adversos , Masculino , Purinas , Pirazoles , Sulfonamidas/efectos adversos , Resultado del Tratamiento , Adulto Joven
19.
Arthritis Rheumatol ; 69(6): 1325-1336, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28118536

RESUMEN

OBJECTIVE: To evaluate proinflammatory cytokines and leukocyte subpopulations in the cerebrospinal fluid (CSF) and blood of patients with neonatal-onset multisystem inflammatory disease (NOMID) after treatment, and to compare inflammatory cytokines in the CSF and blood in 6 patients treated with 2 interleukin-1 (IL-1) blockers-anakinra and canakinumab. METHODS: During routine follow-up visits between December 2011 and October 2013, we immunophenotyped the CSF of 17 pediatric NOMID patients who were treated with anakinra, and analyzed CSF cytokine levels in samples obtained at baseline and at 3-5-year follow-up visits and compared them to samples from healthy controls. RESULTS: CSF levels of IL-6, interferon-γ-inducible 10-kd protein (IP-10/CXCL10), and IL-18 and monocyte and granulocyte counts significantly decreased with anakinra treatment but did not normalize to levels in the controls, even in patients fulfilling criteria for clinical remission. CSF IL-6 and IL-18 levels significantly correlated with measures of blood-brain barrier function, specifically CSF protein (r = 0.75 and r = 0.81, respectively) and albumin quotient (r = 0.79 and r = 0.68, respectively). When patients were treated with canakinumab versus anakinra, median CSF white blood cell counts and IL-6 levels were significantly higher with canakinumab treatment (10.2 cells/mm3 versus 3.7 cells/mm3 and 150.7 pg/ml versus 28.5 pg/ml, respectively) despite similar serum cytokine levels. CONCLUSION: CSF leukocyte subpopulations and cytokine levels significantly improve with optimized IL-1 blocking treatment, but do not normalize. The correlation of CSF IL-6, IP-10/CXCL10, and IL-18 levels with clinical laboratory measures of inflammation and blood-brain barrier function suggests that they may have a role as biomarkers in central nervous system (CNS) inflammation. The difference in inhibition of CSF biomarkers between 2 IL-1 blocking agents, anakinra and canakinumab, suggests differences in efficacy in the intrathecal compartment, with anakinra being more effective. Our data indicate that intrathecal immune responses shape CNS inflammation and should be assessed in addition to blood markers.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Síndromes Periódicos Asociados a Criopirina/líquido cefalorraquídeo , Citocinas/metabolismo , Meningitis Aséptica/líquido cefalorraquídeo , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Antirreumáticos/uso terapéutico , Biomarcadores/líquido cefalorraquídeo , Preescolar , Síndromes Periódicos Asociados a Criopirina/tratamiento farmacológico , Citocinas/líquido cefalorraquídeo , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Masculino , Meningitis Aséptica/tratamiento farmacológico , Resultado del Tratamiento
20.
Sci Rep ; 6: 35218, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731420

RESUMEN

Age-related accumulation of ploidy changes is associated with decreased expression of genes controlling chromosome segregation and cohesin functions. To determine the consequences of whole chromosome instability (W-CIN) we down-regulated the spindle assembly checkpoint component BUB1 and the mitotic cohesin SMC1A, and used four-color-interphase-FISH coupled with BrdU incorporation and analyses of senescence features to reveal the fate of W-CIN cells. We observed significant correlations between levels of not-diploid cells and senescence-associated features (SAFs). W-CIN induced DNA double strand breaks and elevated oxidative stress, but caused low apoptosis. SAFs of W-CIN cells were remarkably similar to those induced by replicative senescence but occurred in only 13 days versus 4 months. Cultures enriched with not-diploid cells acquired a senescence-associated secretory phenotype (SASP) characterized by IL1B, CXCL8, CCL2, TNF, CCL27 and other pro-inflammatory factors including a novel SASP component CLEC11A. These findings suggest that W-CIN triggers premature senescence, presumably to prevent the propagation of cells with an abnormal DNA content. Cells deviating from diploidy have the ability to communicate with their microenvironment by secretion of an array of signaling factors. Our results suggest that aneuploid cells that accumulate during aging in some mammalian tissues potentially contribute to age-related pathologies and inflammation through SASP secretion.


Asunto(s)
Senescencia Celular/genética , Inestabilidad Cromosómica , Apoptosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , Técnicas de Silenciamiento del Gen , Humanos , Hibridación Fluorescente in Situ , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...